Journal of Statistical Physics, Vol. 103, Nos. 3/4, 2001
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The Luttinger model was introduced to illustrate the possibility of a pertur-
bative treatment of the singularity at the Fermi surface, already known to be
“anomalous” from the results of the theory of Tomonaga, via an exactly soluble
model. It became soon the subject of great interest also on the part of Mathe-
matical Physics and a key to the investigations of the mathematical properties
of Condensed Matter Physics. This paper reviews aspects of the above develop-
ments relevant for renormalization group methods by illustrating the conceptual
development of the renormalization group approach to the ground state theory
of the 1-dimensional spinless Fermi gas at small coupling.
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1. THE LUTTINGER MODEL

The model describes many body systems of two kinds of fermions on a line
whose fields are % _, with a = + specifying the creation and annihilation

, x°

operators for fermions located at a point xe[ —L/2, L/2] = R' and distin-
guished by the label w = + or w = —. The Hamiltonian, “(kinetic energy)

+ (chemical potential) + (potential energy),” is written as

L2 ~ ~
H=["dax ¥ §3 wpliwd,—pr) ¥y,
w==+

—L2

"L/de~+~*~+~* B
+4 dy L W T u(x—y)

—L)2

(1.1)
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where 1 is a coupling constant and v(x — y) is a smooth short range pair
potential (e.g., v(x—y)=0 if [x—y|>p,"' for some “range” p,'). The
parameter vz is the “velocity at the Fermi surface”, vp= pyz/m if m is the
mass of the particles: we have set i=m=1.

This model was introduced in [ Lu63] and, although the author was
apparently unaware of Tomonaga’s work (the connection was pointed out
later in [ ML65]), it illustrates Tomonaga’s theory of spin 0 fermions in
one dimension, [ To50], which shows the remarkable phenomenon of the
anomaly of the ground state: i.e., a ground state with a density of states
which does not have a discontinuity at the Fermi momentum k = p but
its graph has infinite slope with tangency exponent a(1) = O(/1?) called the
“anomaly” of the Fermi surface.

The model, regarded in connection with Tomonaga’s theory, supposes
a priori that the “physically significant” part of the Hamiltonian is described
by quasi particles. This means realizing that the Schwinger functions of the
ground state of a spin 0 Fermi gas can be identified, to leading non trivial
order in the coupling constant A, by thinking that the system in fact con-
sists of two particles with energy close to the Fermi energy p2/2, one with
momentum close to + pp and the other with momentum close to — py
whose fields, in a suitable superposition, yield the field IZ;L of the observ-
able particles.

Writing a momentum close to +py as +pp+k the free field i is
expressed as

;—“z Z i eErrox (1.2)
def

where calling af, = af, ppa s I aF are the creation and annihilation
operators for the Fermi particles, the quasi particles fields are

(1.3)

\/*Z e+th +

Hence if the operator T,

def _ _
TO = Z Z UF(ac_z:k,wawk,(u+a—wk,coatwk,w) (14)

w k>0

approximates the free fermionic kinetic energy plus the chemical potential
energy for k ~0, then the quasi particle fields at time ¢ will be =
€_lTotlp+ e+tT0t_e_thtw Wlth

tht

wxzt

+ tTolpi e—tTo_ Z (ikx+tcok)al;l,—w (15)

th_
k

%
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I do not repeat here the heuristic analysis showing that taking the two
kinds of particles Hamiltonian (1.1) and approximating it with the free
kinetic energy (1.4) and expressing the fermionic field yy* via (1.2) means

(1) thinking the particles with positive momentum as distinct from
the ones with negative momentum and, furthermore,

(2) replacing the dispersion relation &(p) = p?/2 with p= +pp+k by
e(k, +)=p3/2 + kpp and, also,

(3) allowing k to take all values rather than k> — pp or k <pp.

Luttinger regarded his model as quite unrealistic (being one dimen-
sional and with massless fermions): however a posteriori it shows that
Tomonaga’s theory amounted, to leading order in 4, to

(i) replacing the real fermionic particle fields with the = fields
defined by the r.h.s. of (1.2) and (1.3),

(i1) replacing the “real” fermionic particle kinetic energy defined as

L2 N ~
o= [ D P I =Y A - P, (16)
—L/2 »
where p=2nn/L, n=0, £1, 2, .., by the operator T, above, which can
be written

L2

Tozf dx Y (—ivped )Y (1.7)
_ip ~ w, X w, x

and

(ii1)) replacing the potential energy by the expression in (1.1), rather
than considering the usual pair potential which would be written as

L2 ~ o~ o~ o~
AT dxdy §rUS B ox— ) (1.8)
—L2
Note that comparing (1.8) with the potential energy in (1.1) and with (1.2)
several “cross terms” involving fields with different quasi particles labels are
absent.

The model was stated to be exactly soluble in the remarkable paper
[Lu63] and the solution did yield the anomaly of the Fermi surface men-
tioned above, thereby providing a simple explanation of the phenomenon.

The exact solution was, however, not really correct because of an error
on the Fock space canonical commutation relations which, in infinitely
many degrees of freedom systems, do not have a unique representation:
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a matter that is now well understood but that was not so clear at the time.
Nevertheless the attempt in [ Lu63] contained the important ideas indicat-
ing strongly that the model could probably be really solved exactly. The
exact solution was discovered a little later by Mattis and Lieb, [ ML65].
The real value of the anomaly and Luttinger’s agree to leading order in A
(ie., to second order) but they differ in the higher orders (which vanish
identically in Luttinger’s expression while in [ ML65] the anomaly is
analytic in A near A=0 but it is not a polynomial of second order). In
[ Ha81] the model is reviewed and its relevance for Tomonaga’s theory and
for other 1-dimensional problems is pointed out; see also [BGM92],
[Ma99], [GMO00], [BMO00a].

The work [ ML65] should be seen as a part of a series of exact
solutions of “simple” models, developed in a burst of papers by several
authors in the 1960’s.

The Luttinger model is closely related to the Thirring model of quan-
tum field theory, [ Lu63]: for an analysis of the relation between the two
models see [ Ma91].

2. THE “REALISTIC” 1-DIMENSIONAL SPINLESS MODEL.
SCHWINGER FUNCTIONS AND GROUND STATE.

More recently there has been renewed interest, particularly after the
discovery of high temperature superconductivity, in understanding the
properties of condensed matter from a fundamental point of view, ie.,
without relying on heuristic arguments, whenever possible. One of the
directions in which research has been stimulated is the application of multi-
scale analysis, i.e., of the renormalization group methods, to investigate the
large distance properties of the correlations in the ground states of the
simplest systems, i.c., Bose or Fermi gases with weak short range inter-
actions: [BG90], [FT90], [BGPS94], [Sh92], [ BG95]. Other methods
have also been applied leading to complementary results valid also at
strong coupling, for instance [ KL73] and [ KLY88], [LYO00], or for exact
solutions [ LL63], [LW68].

In this paper we shall discuss the theory of the ground state of the
1-dimensional Fermi gas (model (2.1) below). A mathematically rigorous
theory turned out surprisingly hard even at small A, probably because the
basic formalism, even today, is still waiting to acquire an established shape.
Furthermore the case of spinning electrons with attractive rotationally
symmetric pair interaction still defies research. The situation is worse in
higher dimension where only formal developments seem to be available
(see [BG90], [FT90], [Sh92]): therefore higher dimension must be left
out of the present discussion, but for sporadic comments.
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In dimension 1 the Hamiltonian of a system of spin 0, mass m=1,
fermionic particles in a periodic box [ —L/2, L/2] (and in the grand
canonical ensemble) is

H=Y (—%Axi—u)—k% Y v(x;—x;) (2.1)

s=1 i<j

with N =number of particles or equivalently, in second quantized form,

L2 ~ ~
H=[" " ax P (=36~ 05

—L2

L2 - N
“Lmdx dyv(x =Yy, (2.2)

where  is the usual Fermi field (rather than its approximation in (1.2),
(1.3)).

If p is the density of the gas the simplest question that one can ask is

. def .

about the behavior near p= +np = +pr= +./2u of the Fourier trans-
form of the one particle reduced density matrix. Note that if A=0 it is
known that the one particle reduced density matrix at inverse temperature
=+ is

Tre PAy+ gy

23
Tre P4 23)

Wrvgy = Jim

with Fourier transform y, (p)=11f |p| <pp and zero otherwise.
In the following it will be convenient to study the more general
Schwinger functions

Sol-uan(llxl)'"a lnxn)

=(—1)" im lim
B—o> o0 A— 0

Tr(e —(B—1ty1)) Hl//an(l)e —(Zr(1) ~ ta(2)) Hlp“'nm . lpan(n)e _tn(n)H)
Xa(1) Xn(2) Xn(n) (2 4)
Tre #H

X

where ¢,=+1, n is the permutation of (I,..,n), such that 7., >
Laay> -+ > 1y and (—1)" is the permutation parity; n is even. In this
way x,,.(p) is the Fourier transform of S_((07, x), (0, 0)).
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3. FUNCTIONAL INTEGRATION FOR 1-DIM SPINLESS
FERMIONS. LUTTINGER-KOHN-WARD DETERMINATION
OF THE CHEMICAL POTENTIAL

Denoting &= (x,, x), 7=(y,, y) € R% & =(ko, k)€ R*> the Schwinger
functions introduced in Section 2 can be usefully expressed as functional
integrals

Sal ""Tn(él 9ees én)

= lim lim
B—> o0 A— 0

L2

. [ P(d) e=Hn lo e v vy ooy ex =) dednyr .y

2 3.1
[ P(dp) eI o

B
71/250"'

where the Y F are “Grassmanian variables,” see for instance Section 3.1 in
[BG95]. The “integration” with respect to P(dy/) is defined on monomials

i Yz by assigning the value of (Y& -z > S [P(d)) Y-y
via Wick’s rule with propagators (¥, > =<y 77> =0 and

W ve)r=g(E=&)

g&)= Y (=1 g(xq+ne, x+nL,pf) (32)
neZl,ner1

e —ipyxy—ipx

ipo+(p* = p7)/2

_ 1
8 =i | = dpo dp

so that g(&) is periodic i x with period L and antiperiodic in x, with period f.

The integration is extended linearly to even polynomials and to func-
tions of the Grassmanian fields that admit an entire even power series
expansion, like the exponential in (3.1).

In this way the integrals in the numerator and in the denominator of
(3.1) are defined as formal power series in 4. The series can be quite easily
shown to be convergent for |1| < O(L~') and one of the goals is to find
conditions under which they can be analytically continued to values of 4
which are, possibly, small but independent of the size L of the system.

If we insist in fixing a priori the chemical potential the first effect of
the interaction will be that the singularity of the Fourier transform of
<1Z; IZO_>, see (1.3), will no longer be where it is located when 1 =0,
namely at k= + pp= i\/271, but (reasonably) it will be shifted by O(A).
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It is, therefore, more convenient to keep the location of the singularity
fixed at a prefixed value pr. This can be achieved by taking a A-dependent
chemical potential u=1p2%+v, see (2.1), where v has to be conveniently
chosen as a function of A.

This means that instead of (3.1) one studies the same expression with
the argument of the exponential modified into

[ [T ae

—L27Y0

L2 B
”“f fo VEYZ bW, 0(xo— o) vlx — y) dé dy (3.3)

—L2

In a series of basic papers, [Lu60], [KL60], [LW60], Luttinger, Kohn
and Ward point out that this determines v as a power series in A and it has
the important effect of generating a power series for the Schwinger functions
which is finite to all orders, uniformly in the size of the system: had we fixed
the chemical potential 4 rather than the Fermi momentum p, we would
have obtained a power series in A with coefficients diverging to all non
trivial orders as L — oo.

Of course the latter divergence does not mean that the theory with a
fixed chemical potential cannot be defined: it simply means that such a
theory will have Schwinger functions with a singularity at a Fermi momen-
tum which is different from ./2u so that the expansion with reference to a
free field with singularity at \/274 contains diverging expressions. It makes
also clear that it is likely to be more convenient to develop a perturbation
theory of the ground state at fixed Fermi momentum rather than at fixed
chemical potential. Should one wish to study the problem at fixed chemical
potential u, after developing the theory at fixed pr and obtaining the
chemical potential correction v in terms of 4, pr, one can imagine, that
u=pr+v(pr, 4) and solve this relation for pj, as a function of u, A.

A related important result due to Luttinger (“Luttinger’s theorem)
states that fixing the Fermi momentum is equivalent to fixing the density
which is p=mnpr whether A=0 or not: this was shown by Luttinger,
[Lu60], to hold to all orders of perturbation theory. A mathematically
rigorous proof would be desirable.

4. THE ULTRAVIOLET PROBLEM

If p, ! is the range of the interaction potential and &(p)=(p*>— p%)/2
the propagator (3.2) can be written as sum of two terms
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g(&)=g"="&) + g =)

1 (1 —e*(q%JrE(q)z)/pé) e
= d 4.1
14 (é) (27Z)d+1 j _ lqO +£(q) K ( )
1 e*(qgﬂ(q)z)/péefix‘g
(<0) e
SO =t T

where ¢ = (xg, X), K = (g, q). The term g¢> % is the “ultraviolet component
of the propagator” and g(<? is the “infrared component.”

The decomposition can be used to introduce two auxiliary “independent”
Grassmanian fields (=% and (<9 so that Y, =y + <%, This
means that in evaluating the integrals in (3.1) we can replace y, with
Y™V +y=? and perform the Grassmanian integration following the
Wick’s rule with propagators

<wéa)—wga)+>:g(a)(é_n) a=(>0),(<0) (4.2)

while all the other propagators vanish. Calling V() the expression (3.3)
this is also written as the identity (“Fubini’s theorem” for Grassmanian
integrals)

jp(d‘ﬁ) eV(wlpg NN
fP(dl//)eV('”

_jp(dl//(g())) P(dl,b(>0))eV('/’(>O)+'MSO))(lﬁ,(51>0)UI+lﬁ(§fo)al)"'

s‘P(dlp)eV(.p(>o)+l/,<<0))
(4.3)

Remark. Attention should be paid to the fact that (4.1) deals with
the “infinite volume” (f — oo, L — oo0) limit g(&) rather than with the g(&)
of (3.2). Hence one should really deal with g and decompose the latter into
the sum g>9(¢&)+ g <Y(&). This generates a great variety of “small”
problems both in the ultraviolet and, later, in the infrared analysis. There
is no few words way out of this (well known) difficulty. Here we choose to
ignore it except for a few necessary comments when needed, because it is
discussed widely in the literature, see [ BG95], [ BM0Oa].

The idea is to perform first the integral over the “high frequency part”
Y= of the field both in the numerator and in the denominator of (4.3).
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Fixing attention on the denominator (simpler than the numerator which,
however, can be treated in the same way) the result will be written

| Py e" ) = [ Pyt <o) 7= (44)

which in fact is a definition of 7®, the “effective potential on scale p,.”

Technically there is a lot of work behind the latter relation: one has
to show that the result of the integration of the field y(>® can be written
in the form of an exponential of an effective potential 7(®: this means
showing that the result can be expressed as an exponential of

FO(y(<0) = i % ©

m=0,p<m
(<0)+ (<0)— (<0)+ (<0)—
XY=t =0T 0 WS O e (4.5)

p+1

and the kernels V(9 (&,..£,,) are

(1) analytic in A, v.

(i) decay exponentially on scale p,: which means that, for m=2n,
they are bounded by C,exp —cpy ' d(&ysenn, &y,) Where d(&q,..., &,,) is the
length of the shortest path connecting the points &, ..., &,, in R?" and ¢ >0,
C, are suitable constants.

Note that already the V(y), cf. (3.3) can be cast in the form (4.5).
Furthermore the Grassmanian integral P(dy) can be written as the
“Lebesgue Grassmanian integral” diy * diy — times an exponential

P(dy) = const e S i dx dx b 0 =12@= 2DV g+ = (4.6)

where diy * diy ~ is the Grassmanian integration with “trivial propagators,”
ie., with the only non vanishing propagator given by {yz " > = (& —n).
Therefore the argument of the exponent can also be written in the form
(4.5) (involving only derivatives of first order at most: as the second
derivative can be integrated by parts): a property that turns out to be quite
important.

Remark. The difficulty mentioned in the remark following (4.3)
shows up very clearly here. The integrals in the exponential in (4.5) should
be over the rectangle [ —L/2, L/2]x[0, ] with periodic-antiperiodic
boundary conditions. However they are extended to the whole R% this
means that we have implicitly taken the limits in (3.1). However strictly
speaking this does not make sense unless we explain what it means to
integrate over the whole space a monomial in Grassmanian variables. The
correct interpretation is the following:
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(a) keeping f, L finite and using the propagator g(&) in (3.2) one
performs the integration over the ultraviolet components (> and one
obtains (4.4) with a 7@ similar to (4.5) but with the coefficient kernels
which now depend on L, f.

_ (b) the kernels converge to limits as f, L— oo and the limits
Vﬁg,)p(f 1 -+ &,,) verify the properties stated after (4.5) (uniformly in f, L).

(c) the identity (4.4) means that if one wishes to compute

sp(d¢(>0)) P(dlﬁ(@)) eV(W)lp(éfo)alw(éfo)JZ...

4.7)
fP(le‘”))P(dlﬁ‘@))eV(“’)
then one can “simply” compute
P(dy( <) eV‘O)(wKO))w(SO) TS0
j o 2 (4.8)

s P(dy<9) e VO

by developing the " in powers of the fields and then apply Wick’s rule
with propagator g{<® obtaining in this way a combination of integrals of
products of the kernels in (4.5). And the series converges.

(d) all divergences due to the infinite extension of the domains of
integration over the & variables disappear when one considers the ratio in
(4.3) because of the fast decay of the kernels. As one may suspect there will
also be exchange of limits queries, which are solved again by using the
uniformity of the estimates. See [ BGPS94], for instance, and [ BMO00a].

Performing the “remaining integral” is therefore similar to the original
problem except that now the expression 7® is more involved but the
propagator is simpler (being “just” g<%, ie., a propagator with an ultra-
violet cut off at scale pg ).

In fact the decay of the coefficients ¥®) make the 7® “essentially
local” and the “remaining integral” is not really harder than the one
obtained by replacing 7 by

L2

B
VOW ) vy [ [ g0 e

—L2

L2 k <0 <0 <0 <0
Fio [ [ WO I =0 g S0 (& ) dE dy

—r2Y

(4.9)

where w is a smooth potential with range p, .
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In fact in most treatments the above analysis is considered “trivial”
and one just poses the problem of studying the ratio of integrals

!"P(dl//(so)) e—V(O)(W(SO))lP(éfO)GI .

[ P(dy (<) e VO(y(<0)

(4.10)

with V' given by (4.9).

It should be noted that the ultraviolet problem is much simpler when the
fermions are supposed to be located on a lattice because in that case there
is a minimum length scale, hence a maximum spatial momentum.

For the above reason I concentrate here on the infrared problem,
modeled by (4.10). However things are not so simple in the case of the
Luttinger model: in that model the inverse propagator diverges at large
momenta linearly rather than quadratically. This generates a non trivial
ultraviolet problem: it can be treated in a way analogous to the above, but
one has to exhibit various cancellations because the expressions for the
kernels of the effective potential V') are given by apparently non con-
vergent integrals. The analysis for the (harder) Luttinger model case is
carried out in detail in [ GS93].

5. THE INFRARED PROBLEM AND QUASI PARTICLES

The infrared problem (i.e., understanding the large distance properties
of the Schwinger functions, or equivalently the singularities at finite
momentum of their Fourier transforms) is more interesting and rich in
structure. A naive application of perturbation theory leads to facing the
fact that the propagators oscillate on scale p ' and decay slowly at infinity.

Quasi particles arise when one attempts to disentangle the oscillations
and the decay at co. Technically one remarks that the propagator for the
functional integrals with respect to P(dy) can be written, setting &= (¢, x)
and x = (kg, k) in general dimension d> 1, as

dd+lq e—i(q0t+g-gc)

(2n)*+Y —igqo+ (¢> — p3)/2m

2&)=|

= J dow e~ T%%g(x, t, w)

—ikgt +k-x dd+ 1}(

ok, 0)  (2m)*+!

=fe—ippg)zc dg) j ¢

(5.1)
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where @ is a unit vector and dw is the integration over the unit sphere
in RY normalized to 1 (if the dimension d=1 integrating over ® means
27'% ,_.-). An elementary calculation shows that (at least if d is odd)
g(x, t, w), which is not unique, can be defined so that ek, w)= —ik,+
vpw -k + O(k?) (see Section 5 and Appendix A in [BG90]).

This means that the free fermion system in a ground state with Fermi
momentum at p, can be considered as a system of “quasi particles” in the
vacuum carrying an “intrinsic” linecar momentum equal to a Fermi sphere
momentum p o in addition to the “external” momentum k. The dispersion
relation is almost linear in the sense that the system on large scales, i.e.,
x small, will show a dispersion relation essentially identical to &(k, w)=
w - kvg: this property seems to remain valid even in presence of interaction
so that the intuition can be led by the idea that the quasi particles must be
taken seriously, see Section 5 in [ BG90]. Formally (5.1) can be regarded,
cf. also (1.2), as the propagator of a composite field defined as

V= [ doetrreny : (52)

X, 1, 0

with the fields Y,  being Grassmanian fields with propagators g(&, w).

X Lo

Remark. It is important to stress that the above fields are just
Grassmanian fields rather than the usual fermionic fields. If we wanted,
instead, to think of the quasi particles fields as Grassmanian fields which
correspond to physical particles it would be necessary that the propagators
g(&, w) have the “reflection positivity” property, [ Si74]: and this would also
be a criterion to fix the arbitrariness in the choice of the representation
(5.1) mentioned above. However it is not known whether such a choice is
possible. The success of the quasi particles-based view of the theory of the
ground states of fermions leads us to feel that this might be possible.

It is difficult to give a meaning to the simple and captivating
approximation

d9+ 1 o — kot +kx)

2m)** ! —iko+vpw-k

g&o)=| (5.3)

if d>1 because it corresponds to a system of fermions with a linear dis-
persion relation which therefore will give rise to ultraviolet instabilities:
possibly when the potential is repulsive and certainly when it is attractive.
Note, however, that it makes sense if d =1 because in this case the system
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is stable even with a linear kinetic energy: in fact it becomes almost
precisely the Luttinger model (it differs from it because of the presence of
“extra” cross terms in the interaction, cf. comment following (1.8)).

However (5.3) gives a good representation of the propagators for
small k. Therefore the approximation can be expected to be reasonable in
the sense that its version with an ultraviolet cut-off, i.e.

—4.,2 2
d*+ 1 e~ Po (kg+vpk?)

(<0) — —i(kyt + kx) 54
=G 0)=[ e ey S L

can be used to study the infrared problems presented by the (4.9), (4.10).

The papers [ BG90] and [ BGPS94] consider the integrals in (4.10)
with a propagator (5.4) and an interaction V® even simpler than the one
in (4.9), namely

YO (<) — fm jﬁ Y0y (<0 g
— Vo w, & w, &

—L270 4 4
B <0 <0 <0 (<0
<0)+ <0)— <0)+ <0)—
o L/Jo PEQTYEYTY STy aE (55)

where several crossed terms have been eliminated and the interaction has
been made strictly local (which, in the spinless case, is possible only if we
think of the system as made with quasi particles because the exclusion
principle makes local interactions which are quartic in spinless fermion
fields vanish identically).

In the quoted papers it is shown in detail that if d =1 the understand-
ing of the integrals in (4.10) with a propagator (5.4) and an interaction
1® given by (5.5) suffice to solve in a mathematically complete way the
problem of the ground state of (1.1) and to obtain Tomonaga’s main result
that the anomaly at the Fermi surface is not 0 and in fact it is an analytic
function of the coupling 4. Of course this is no surprise because of the
works [ Lu63], [ML65].

Why to redo Tomonaga’s work in mathematically precise way? the
point is that the notion of “understanding” and of “proof” of a physical
result evolve. And many of the results that were considered established at
the time (~1950) have come under scrutiny and have been cast into a
more rigorous form. This is necessary mostly because the attempts to
extend them to other cases (namely higher dimension or even one dimen-
sion with spin, or just with more structure, see question (2) in Section 8) have
failed and therefore it becomes necessary to have a clear idea of what really
fails and what can still be usefully taken over and exploited to attack harder
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problems. This necessity is similar to the need that became evident in the
1960’s to have a more rigorous foundation of the theory of ensembles
in equilibrium statistical mechanics. It should be clear that revisiting
Tomonaga’s theory in no way implies that there are faults in the original
work: it simply did not deal with questions that at the time were, rightly,
not considered important.

6. RENORMALIZATION GROUP AND THE INFRARED
PROBLEM

We consider the problem of computing the “partition function,” i.e.,
the problem of studying the integral in the denominator of (4.9) with a
propagator given by (5.4) and an interaction given by (5.5). We define

dK (67272}"62—67272(,'71)}{2)

2m)? —iko+ vpwk

6,i(k()t + wkx)

g 0) ¥ | (
= 2/g(2"¢, ) (6.1)

h=0, =1, =2, .., = +, k= (ko, k), k> = (k2 + v2k?)/p%. Therefore if Z, & 1

D)= Y Ve )

Z 0 5=0

def 1 (0) 1 (<-1)
= —g'< 2
IO A I (62)

and the integration (4.10) can be thought of as an integration over quasi
partlcle fields y (=2 which are decomposable as the sum of two fields 0,
and (s with propagators (1/Z,) g (&, w) and (1/Z,) g7 V(& w):

fp(d¢(<0)) VO Z )

EJ P (dy®) PZO(dwK—l)) VO Zy WO+ <=1y (6.3)

This is convenient because “we know” how to compute the integral over
9 by perturbation theory. This means that the techniques to study the
integral although not trivial are, nevertheless, well established mainly via
the results in [ Le87] which provide us with a technique designed to take
advantage of the fermionic nature of the fields. The result is the expected
one: one can basically compute to second order of perturbation in 4 and
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neglect the rest. More precisely one can prove that the result of the integration
(in the sense discussed in the remark following (4.5)) is

[ Pofap==) 7R yith

17(0)(\/70 lp(sfn)
d¢

y j (Z" V& £,) ¢5gl"'¢¢ne’”2’”“”’x’j (6.4)

n=0,a n:

where @, is either Y%, g,= +, or a derivative of this field; and a denotes
the labels o, as well as the labels necessary to identify which of the fields
@ are differentiated and which are not; we also suppose that the  * fields
are to the left of the y~ (recall, however, that the fields are Grassmanian
so that they anticommute). The number n must be, obviously, even.

The kernels V, (&,,..., &,) are analytic functions of 4,, v, convergent
with a convergence radius which is independent of the sizes L, f of the
system and decay exponentially fast on scale p, !, in the sense following
(4.5): the technique for this proof is in [Le87] and the analysis can be
found in [ BGPS94].

It would not be wise to simply iterate the procedure calling V'~V the
“effective interaction” ¥® and (with the procedure already used in the
previous splitting, cf. (6.2)) splitting the field (<~ into y(~V 4y (<=2
because the result, under further iteration, would be a progressive worsening
of the bounds on the constants and a decrease in the convergence radius
of the expansions in powers of 4, vy. This is basically due to the fact that
vo cannot be arbitrary under the only condition that it is small: it has to be
tuned so that the Schwinger functions have singularities at momentum
tpr.

The correct procedure will be to adjust recursively the value of v, as
a function of A, keeping the singularity at fixed momentum. For this purpose
one distinguishes the relevant part of the interaction ¥ from the irrele-
vant part. The latter is not small (in a sense it is the most important part!):
the relevant part is just a part of V¥ whose absence would allow us to
perform a naive recursion without loss in the size of the constants or of the
convergence radii.

The identification of the relevant terms is a matter of dimensional
analysis, at least in the simplest cases, see [ Ga85], [ BG95]. What we call
here “relevant” is a set of terms (see below) which in the usual nomen-
clature of the renormalization group approaches is further divided into
relevant and marginal terms. In the present case the relevant part is the
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“local part” of the terms which are quadratic and quartic in the fields. If
0., » denotes a Kronecker delta such local part is defined by

2
— — 1 — —
f‘ﬁgwlwng‘/IQ%WQW = 5wl+w2+w3+w4,0 2 .Zl w%wlwgw2lp§jw3wéjw4
j=
LVE oV ey, = O, )V e ¥ ey, TV E 0 (E2—C1) - DeV g o)
(6.5)

where D.=(0,, 0,).

Applying the operator ¥ to the expression in (6.4) one realizes that
the result can be expressed as a linear combination of the following
Grassmanian monomials

Fr=— Ut b5 b )= de

Fz:‘f Y Vo Vo de
==+ (6.6)

Fa= = X 0l d—ivgwd,) Y o d

Fam = [ X 05,005, . d

w=*+

Note that there is only one possible non zero local term of fourth order in
the field because of the Fermi statistics and the facts that w = +1 and that
our fermions are spinless. Note also that the above localization operation
would be completely different (and useless) if we had not introduced the
quasi particles: for instance F; would simply vanish because of the Fermi
statistics as it would involve the square of Grassmanian fields.

Applying the operator £ to 17(0)(\/2, Y(<~V) one obtains an
expression

JOZ2F (Y (S=D) 4 7OZ Fy(y(S=D)
+&(0)ZOF3(,/,(<—1))+C‘(0)ZOF4(1/,(<—1))+(1 — %) 7o (6.7)

where 2, 7@ 7@ 7© are simple combinations of integrals of the kernels,
see (6.4), for the monomials quadratic or quartic in the fields and are
therefore analytic in 4, v,.

The simplest way to proceed is to consider a representation of P (di)
analogous to (4.6) for the integrations over the quasi particle fields, with
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the quadratic form W{S—V*(0,+(—302—3p3) Y=~V replaced by

ZoY e 2 Yoo V0, —ivpwd,) I'_1(0) 'SV~ where I',(9) is the oper-

ator which multiplies the Fourier transforms by I',(i) = e * @70 7 (ko + 05,

indeed this cho1ce attributes to the field SV~ the correct propagator
g =7b(&), cf. (6.2). Then the integral to be performed looks like

const J e 20 T0m s [V, T O iopd) T_y(@) v, d

% @ 0ZoFa(( <~y + JOZ3F (< =Dy 4 (1 —2) 7O

x e* V2B ST+ EOZEWS D) g+ gy (6.8)

and it is natural to collect the quadratic parts defining

Z_, d—eon‘F“OZo, (1 Z_, d:ef(g(o)—ozo) Z,

) o1 . (6.9)
22, =29272, Vv 1 Z_ =2V,7Z,

Here the factor 2 in front of the “relevant coupling” v, is natural: if the
theory is developed only to first order (called “power counting” in the
jargon of the renormalization group, see Eq. (6.18) in [ BG95]) the result
is that Z_, =Z, and v_; =2v,. This transforms the integral into

jPZ (dl//(<—1)) 6271571F4(l//(<71))+Zfl"—1F2(‘/’(<7l))
—1
s @2 A PSS+ W (JZ <) (6.10)

The procedure can now be iterated and the integrals can be performed in
the same way defining recursively 4,, v, {, called “running couplings,” Z,
called “wave function renormalization” and W, called “irrelevant operators”
for h=0, —1, —2,.... The ratio Z,/Z, ., will be called the “wave function
renormalization rate.”

Remarks. (i) Note that

W_i(/Z_1(p'=7Y)
=(1-2) VO/Z 4 =)

a0 Zo [ WSV (0, —ioped,)(1 = T_ (@) YD de (611)
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(i) In [BG90], [BGPS94], [ BG95] the definitions of W, and/or of
the localization operator % are slightly different: more involved but,
possibly, more convenient for performing estimates. The choices differ,
however, by “irrelevant terms” and are (therefore) equivalent.

The basic bound is that the running couplings on scale h and the kernels
that are coefficients in the definition of W, are analytic in v, = Ay, vy, i)
for W' > h under the condition that all the latter quantities and |Z, |Z,, — 1|
for W' > h are small enough independently on the size L of the system and also
on the scale h.

The relation between the running couplings can be written, therefore,
as

_ Z,
U1 =My Uyt By | Uns Upg 150005 Vo .

..
Zh+1

1= 1+4 ey Vo3 yoee
Z ( + h<yh,yh+ls Vo Znis >>

where M, is a diagonal matrix with matrix elements (Z,/Z,_,)>
2Z,/Z, 1, Z4/Z,_ and the functions B,, 4, are analytic under the condi-
tions that the running couplings and the renormalization rate are small
enough independently of /4 <0.

Furthermore one can prove, [ BG90], [ BGPS94], that after eliminat-
ing the wave function renormalization rates in the first of (6.12) by using
recursively the second equation the relation (6.12) can be written

(6.12)

Zy
:1+B’(y 72 7’“92 )
Zh+1 MEh+1 h 0 (613)

Vp=A0p 1+ By(0p 415 Upoees Vo)

with B),, B, analytic in their arguments v, , under the conditions that the
running couplings are small enough independently of 2 <0, and A is the
diagonal matrix with diagonal (1, 1, 2).

At this point the strategy is clear: the (6.13), called the beta functional,
defines a “flow,” called the renormalization flow, in the space of the running
couplings v = (4, v, {) which is well defined as long as the running couplings
themselves stay small enough in the above sense so that perturbation
theory can be applied to pass from one scale to the next (i.e., as long as
|v,| 1s so small to be inside the convergence domain of the series expressing
the functions B),, B,). The initial values are Ay, vy, {o: 4, Will have to be
taken small (so that the perturbation theory can be applied at least to
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perform the first integration, ie., the integration over ¥®), v, also will
have to be taken small and {, must be taken {,=0 (because we start the
analysis from (5.5) which contains no term like F,, see (6.6)).

Note that if we studied the problem without the approximation intro-
duced after (5.5) (starting from the Hamiltonian (3.3)) we would end up
after the ultraviolet integration with a V© which is much more involved
than the expression (5.5) with which we began the infrared analysis. There-
fore the localization operator acting on V© may (as indeed it does)
produce also a term of the type F,: which implies that {, will have a non
zero value. This however does not help to provide us with more freedom
because this {, is not arbitrary being a function of the couplings 4, v in the
original Hamiltonian (3.3): it is intrinsic to the model that there are only two
adjustable constants in the Hamiltonian.

7. THE VANISHING OF THE BETA FUNCTION: THE ROLE OF
THE LUTTINGER MODEL

The only freedom that we have to “make things work” is the choice 4,
(or of A in the theory without approximations) small “enough” and the
selection of v, (or of v in the theory without approximations).

What has been sketched until now is technically involved, but it is not
really difficult because the techniques for a rigorous multiscale analysis has
been established since a long time. In many problems, among which the
d-dimensional Fermi systems, see [ BG90], or the scalar field theories, see
[Ga85], [BGY5], it is, in a sense, a pure matter of technical routine work
to prove that the successive integration of the components of the fields on
various scales can be reduced to the study of a renormalization flow like
(6.12), under the assumption that the running constants stay small enough.

In itself such a work does not really mean much unless one is able to
exhibit a trajectory of the flow that keeps the running constants small
enough to allow us to apply perturbation theory to compute the effective
potentials from one scale to the next via convergent series for the kernels
coefficients.

Remarks. (1) It is indeed very easy to work out alternative, sub-
stantially different, integration algorithms which work as beautifully as the
one described above but which are completely useless: a nice and relevant
example is obtained by keeping Z, =1 and, correspondingly, not eliminat-
ing the quadratic terms with coefficients «, that are generated at each
integration of a field component . Everything works fine: however one
can prove that no initial data 1., v, exist which keep the constants 1,, v,
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oy, €5, small for all h if ay=0, {,=0 (or, in the theory without approxima-
tions, if . and v are the only free parameters)!

(2) The only interest of the latter remark (1) lies in the fact that if
it had been possible to find v, as a function of 1, so that 1,, v,, «;, z,
stayed small for all 2 <0 then it would follow (with some extra work, see
[BGPS941]) that the singularity of the one particle Schwinger function at
the Fermi surface would be a discontinuity, as in the non interacting case.
This failure shows that the latter property cannot be derived as a conse-
quence of a perturbation analysis, if true (it is not! as we know since
Tomonaga’s work).

(3) Of course the impossibility of a normal Fermi surface in generic
1-dimensional many fermions systems has been known since the early days
of many body theory as a consequence of the divergence of the second
order corrections to the Schwinger functions (divergence of the “self-energy”
which occurs in dimension 1).

Therefore after the above (long and tiring) set up of the renormalization
flow the real work starts.

It was well known that there were interesting conjectures about a
number of cancellations that occur in the theory of one dimensional
spinless fermions. In our language they can be summarized by saying that
“the beta function effectively vanishes,” see [ So79].

It is very difficult however to find a proof by computing the beta func-
tional to all orders. Introducing the function, called the “beta function,”

p)E lim Byv, v...v), v=(41{)eR? (7.1)

- h— —o

a major simplification occurs by realizing, see [ BG90], [ BGPS94], that
there is a solution to the flow generated by the recursion (6.13) with |v,| so
small that all running couplings stay within the convergence domain of the
functions B, provided the components (relative to the constants A and ()
b1, B of the beta function = (f;, B,, f3) vanish.

A proof of the latter property looks like an easier problem. However
the first proof came from an indirect argument that we describe below.

(1) one first repeats the above analysis for the Luttinger model: this
was assumed possible in [ BG90], [BGM92], and later proved in [ GS93]:
the difficulty being essentially in the treatment of the ultraviolet problem.

(2) once the beta functional has been defined for the Luttinger model
it has been remarked in [ BG90] that although the beta functionals of the



The Luttinger Model 479

Luttinger model and the corresponding one of the “realistic” model in (1.1)
are different the beta functions of the two models coincide, [ BG90].

(3) one checks that if f; or f, did not vanish this would contradict
the exact solution of the Luttinger model, [BG90], [BGM?92],
[BGPF9%4].

This allowed to prove the existence of a trajectory of the renormalization
flow which stays close to the origin and within the radius of convergence
of all the expansions in the running couplings considered (including that of
the beta functional) thus completing the theory of the 1-dimensional
spinless Fermi gas at small coupling and yielding also the analyticity of the
anomaly exponent in A

The third component of the beta function does not vanish: this is
however not necessary. In fact the constant v, tends to diverge and very
fast (O(27")): but this can be easily counterbalanced because the initial
value of v, is free and we can tune it so that v, does not diverge. In fact
there can be only one value of v, which has this property (essentially
because, near a hyperbolic equilibrium attractive or marginal along the
A-axis and repulsive along the v-axis, given 4 small enough one can find
only one value of v small such that the evolution of the datum A, v stays
close to the origin forever).

8. COMMENTS AND OUTLOOK

One can wonder whether a simpler symmetry argument can be given
to prove that the beta function f;, f, components vanish: before and after
[BG90] this has been attempted in various papers, see for instance
[GL72] and [MD93], where however one neglects the (necessary)
presence of the decreasing cut-off 2"p,, for h— —oo, arising in the
successive integrations of the infrared scales. It seems extremely difficult to
bypass this apparently harmless difficulty: and one should be careful with
“harmless” cut-off difficulties as the note 5 in [ ML65] and the first two
paragraphs in Section 3.2 of [ Ha81] indicate.

Nevertheless such a proof must be possible and recently new attempts
at finding it are being considered, [ BM0Ob]: this would be a major
achievement which, however, would not diminish the importance of the
idea of hatching out of Tomonaga’s Hamiltonian a much simpler model
that really catches all its main features. The existence of the indirect proof
of the vanishing of the beta function based in an essential way on the
[ML65] solution of the Luttinger model, is an important factor in the
search of the proof based on symmetry considerations.
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Mainly through the work of Mastropietro and collaborators the
Luttinger model (together with its extension by Mattis, [ Ma64]) has
received several other applications in the frame of the renormalization
group approach to the ground state of Fermi systems; for a complete review
see [ GMO0] where, among other results, the interesting phenomenon of the
A dependence of the anomalies in the higher Schwinger functions is sum-
marized as well as the results of the theory of one dimensional fermions in
a periodic or quasi periodic potential (with Fermi momentum pin the bands
or at the top of a band).

Another somewhat unexpected development has been the determina-
tion of the asymptotic behavior of the correlation functions in eight vertex
models or XYZ models in a magnetic field for values of the parameters
that do not correspond to exactly soluble points, [ Ma99b], [ BMO00a].
A corollary of the latter papers should be the determination of the critical
exponents of Ising type models even with non nearest neighbour interactions,
see [ Ma99b]. Applying the remark in [ Sp99] concerning the translation of
the next neighbor 2-dimensional Ising model into a fermionic spinless
I-dimensional problem could lead to a strong extension of the theory of
the critical point in such model covering a wide range of other models
which (unlike the case considered in [ Sp99]) show non universal critical
exponents, see also remarks to Section 1.6 of [ BM00a], [ Ma00] and the
review [ GMOO]. Furthermore the technique used in [ Ma99b], [ BMO00a ]
is quite different from that in [ Sp99].

I conclude by mentioning a few open problems for small coupling:

(1) spinning fermions on a line with attractive interaction. See
[ BM95] for the repulsive case

(2) spinless fermions on two parallel lines with attractive interaction,
see [ Ma99a] for the repulsive case.

(3) two and three dimensional Fermi surface properties(!).

(4) a mathematical proof of the identity p = npy between the density
p and the Fermi momentum p,, see [ Lu60] and Section 3 above, at small
coupling A.

And it is, perhaps, surprising to find the first two in a list of open
problems, while (3) is well known to require new ideas to be understood
and (4) might be understandable with the techniques that we know.

One can ask how much does the exact solution in [LW68] teach us
about the models (2.1). The connection is not really close: not so much
because the model is on a lattice (the lattice version of the model (2.1) can
be treated too, see the review [ GMO00] for references) but because it deals
with spinning electrons. In model (2.1) the interaction cannot be local: and
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this is an essential point in [ LW687], which deals with an exact solution.
Furthermore the informations that one gets from [ LW68] seem to require
substantial extra work, if at all possible, to obtain the Schwinger functions,
see for comparison the relation between [ LL63] and [JMMS80]. On the
other hand the repulsive lattice models, like the model in [ LW68] but with
finite range repulsive interaction, can be treated with the present techniques
even in spinning cases.

We can say that the work of Luttinger [ Lu63] proposing the exactly
soluble model bearing his name and providing some of the ideas that con-
tributed to its exact solution in [ ML65] has been, and remains, a landmark
in Condensed Matter Physics (with its clarifying function of Tomonaga’s
work) and in Mathematical Physics (as an example of how to build a
model that catches all the relevant features of a realistic model and, yet, it
is more tractable) and it has shed new light on the difficult subject of the
theory of low temperature quantum systems.
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